direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C33⋊4C8, C62.12Dic3, C6⋊(C32⋊2C8), (C32×C6)⋊4C8, C33⋊15(C2×C8), (C3×C62).3C4, C3⋊Dic3.42D6, C3⋊Dic3.7Dic3, C22.2(C33⋊C4), (C3×C6)⋊4(C3⋊C8), C32⋊8(C2×C3⋊C8), C3⋊2(C2×C32⋊2C8), C6.12(C2×C32⋊C4), (C2×C6).4(C32⋊C4), C2.3(C2×C33⋊C4), (C6×C3⋊Dic3).14C2, (C3×C3⋊Dic3).10C4, (C2×C3⋊Dic3).10S3, (C32×C6).19(C2×C4), (C3×C6).26(C2×Dic3), (C3×C3⋊Dic3).50C22, SmallGroup(432,639)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊4C8 — C2×C33⋊4C8 |
C33 — C2×C33⋊4C8 |
Generators and relations for C2×C33⋊4C8
G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bc-1, cd=dc, ece-1=b-1c-1, ede-1=d-1 >
Subgroups: 392 in 96 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C8, C3×C6, C3×C6, C3×C6, C3⋊C8, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C62, C62, C2×C3⋊C8, C32×C6, C32×C6, C32⋊2C8, C6×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C3×C62, C2×C32⋊2C8, C33⋊4C8, C6×C3⋊Dic3, C2×C33⋊4C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C2×Dic3, C32⋊C4, C2×C3⋊C8, C32⋊2C8, C2×C32⋊C4, C33⋊C4, C2×C32⋊2C8, C33⋊4C8, C2×C33⋊C4, C2×C33⋊4C8
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)
(1 13 17)(2 18 14)(3 19 15)(4 16 20)(5 9 21)(6 22 10)(7 23 11)(8 12 24)(25 42 33)(26 34 43)(27 35 44)(28 45 36)(29 46 37)(30 38 47)(31 39 48)(32 41 40)
(1 17 13)(3 15 19)(5 21 9)(7 11 23)(25 33 42)(27 44 35)(29 37 46)(31 48 39)
(1 17 13)(2 14 18)(3 19 15)(4 16 20)(5 21 9)(6 10 22)(7 23 11)(8 12 24)(25 33 42)(26 43 34)(27 35 44)(28 45 36)(29 37 46)(30 47 38)(31 39 48)(32 41 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40), (1,13,17)(2,18,14)(3,19,15)(4,16,20)(5,9,21)(6,22,10)(7,23,11)(8,12,24)(25,42,33)(26,34,43)(27,35,44)(28,45,36)(29,46,37)(30,38,47)(31,39,48)(32,41,40), (1,17,13)(3,15,19)(5,21,9)(7,11,23)(25,33,42)(27,44,35)(29,37,46)(31,48,39), (1,17,13)(2,14,18)(3,19,15)(4,16,20)(5,21,9)(6,10,22)(7,23,11)(8,12,24)(25,33,42)(26,43,34)(27,35,44)(28,45,36)(29,37,46)(30,47,38)(31,39,48)(32,41,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40), (1,13,17)(2,18,14)(3,19,15)(4,16,20)(5,9,21)(6,22,10)(7,23,11)(8,12,24)(25,42,33)(26,34,43)(27,35,44)(28,45,36)(29,46,37)(30,38,47)(31,39,48)(32,41,40), (1,17,13)(3,15,19)(5,21,9)(7,11,23)(25,33,42)(27,44,35)(29,37,46)(31,48,39), (1,17,13)(2,14,18)(3,19,15)(4,16,20)(5,21,9)(6,10,22)(7,23,11)(8,12,24)(25,33,42)(26,43,34)(27,35,44)(28,45,36)(29,37,46)(30,47,38)(31,39,48)(32,41,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40)], [(1,13,17),(2,18,14),(3,19,15),(4,16,20),(5,9,21),(6,22,10),(7,23,11),(8,12,24),(25,42,33),(26,34,43),(27,35,44),(28,45,36),(29,46,37),(30,38,47),(31,39,48),(32,41,40)], [(1,17,13),(3,15,19),(5,21,9),(7,11,23),(25,33,42),(27,44,35),(29,37,46),(31,48,39)], [(1,17,13),(2,14,18),(3,19,15),(4,16,20),(5,21,9),(6,10,22),(7,23,11),(8,12,24),(25,33,42),(26,43,34),(27,35,44),(28,45,36),(29,37,46),(30,47,38),(31,39,48),(32,41,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | ··· | 3G | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6U | 8A | ··· | 8H | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 4 | ··· | 4 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 4 | ··· | 4 | 27 | ··· | 27 | 18 | 18 | 18 | 18 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | - | + | - | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | S3 | Dic3 | D6 | Dic3 | C3⋊C8 | C32⋊C4 | C32⋊2C8 | C2×C32⋊C4 | C33⋊C4 | C33⋊4C8 | C2×C33⋊C4 |
kernel | C2×C33⋊4C8 | C33⋊4C8 | C6×C3⋊Dic3 | C3×C3⋊Dic3 | C3×C62 | C32×C6 | C2×C3⋊Dic3 | C3⋊Dic3 | C3⋊Dic3 | C62 | C3×C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 2 | 4 | 8 | 4 |
Matrix representation of C2×C33⋊4C8 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 19 |
0 | 0 | 0 | 8 | 19 | 0 |
0 | 0 | 0 | 0 | 64 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 48 | 48 |
0 | 0 | 0 | 64 | 6 | 67 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 54 | 54 |
0 | 0 | 0 | 8 | 19 | 54 |
0 | 0 | 0 | 0 | 64 | 0 |
0 | 0 | 0 | 0 | 0 | 64 |
0 | 22 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 67 | 6 | 0 | 0 |
0 | 0 | 67 | 67 | 0 | 0 |
0 | 0 | 0 | 63 | 6 | 67 |
0 | 0 | 10 | 0 | 6 | 6 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,0,19,64,0,0,0,19,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,64,0,0,0,0,48,6,1,0,0,0,48,67,0,1],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,54,19,64,0,0,0,54,54,0,64],[0,22,0,0,0,0,22,0,0,0,0,0,0,0,67,67,0,10,0,0,6,67,63,0,0,0,0,0,6,6,0,0,0,0,67,6] >;
C2×C33⋊4C8 in GAP, Magma, Sage, TeX
C_2\times C_3^3\rtimes_4C_8
% in TeX
G:=Group("C2xC3^3:4C8");
// GroupNames label
G:=SmallGroup(432,639);
// by ID
G=gap.SmallGroup(432,639);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,58,2804,298,2693,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^-1,c*d=d*c,e*c*e^-1=b^-1*c^-1,e*d*e^-1=d^-1>;
// generators/relations